Thomas H Ambrosi

Title(s)Assistant Professor, Orthopaedic Surgery
SchoolSchool of Medicine
ORCID ORCID Icon0000-0002-7149-041X Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Stanford University, Palo Alto, CAPostdoc06/2022Stem Cell Biology, Orthopedics
    German Institute of Human Nutrition/Potsdam University, Potsdam, GermanyPhD3/2017Stem Cell Biology, Endocrinology
    Technical University Berlin, Berlin, GermanyDipl.Ing./MSc08/2013Medical Biotechnology
    Dongseo University, Busan, South KoreaMSc08/2013Bioengineering
    Collapse Awards and Honors
    AIMM2022John Haddad Young Investigator Award
    ASBMR2021Young Investigator Award
    ISSCR2021Young Investigator Travel & Merit Award
    Bone Marrow Adiposity Society2019Travel & Best Oral Presentation Award
    ISSCR2019Young Investigator Travel & Merit Award
    German Research Foundation (DFG)2018Postdoc Abroad Scholarship (2-year)
    Berlin School of Regenerative Medicine (BSRT), Charité Berlin2017Ph.D. Thesis Award
    German Academic Exchange Service (DAAD) 2010Full Scholarship to Study Abroad (12-months)

    Collapse Overview 
    Collapse Overview
    Work in our lab aims to delineate skeletal stem cell (SSC) diversity and niche composition in mice and humans with the goal to identify novel molecular targets of endogenous stem cell communication, specifically between skeletal and hematopoietic lineages.

    SSCs are found in distinct anatomical regions of bones with specialized functions contributing to the formation, maintenance, and repair of skeletal tissue. They can differentiate into osteoblasts (bone-forming cells), chondrocytes (cartilage-forming cells), and stromal cells. SSCs also generate specialized niches in the bone marrow that support the formation of blood cells. The interaction between SSCs and hematopoietic stem cells (HSCs) is essential for maintaining bone health as well as blood and immune cell production. In contrast to “MSCs,” a highly heterogeneous cell population often interchangeably used for stromal cells found in a variety of tissues such as bone marrow, adipose tissue, and umbilical cord blood, SSCs are much better defined, including their detailed lineage hierarchy. The impurity of “MSCs” strongly limits their use for the discovery of new biology and their translational application.

    Previous and ongoing work in our lab has comprehensively investigated SSC biology during mouse and human development as well as how alterations in the SSC compartment drive aging and related malignancies by cell-autonomous processes and multi-stem cell system crosstalk (bone-blood). Our long-term goal is to develop strategies to prevent and reverse SSC-based bone and hematopoietic aging and malignancies.
    Collapse Websites
    Collapse Mentoring

    Collapse Featured Content 
    Collapse Twitter

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Brain-Derived CCN3 Is An Osteoanabolic Hormone That Sustains Bone in Lactating Females. bioRxiv. 2023 Nov 16. Babey ME, Krause WC, Herber CB, Chen K, Nikkanen J, Rodriquez R, Zhang X, Castro-Navarro F, Wang Y, Villeda S, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. PMID: 37693376; PMCID: PMC10491109.
      View in: PubMed   Mentions:
    2. Purification and functional characterization of novel human skeletal stem cell lineages. Nat Protoc. 2023 07; 18(7):2256-2282. Hoover MY, Ambrosi TH, Steininger HM, Koepke LS, Wang Y, Zhao L, Murphy MP, Alam AA, Arouge EJ, Butler MGK, Takematsu E, Stavitsky SP, Hu S, Sahoo D, Sinha R, Morri M, Neff N, Bishop J, Gardner M, Goodman S, Longaker M, Chan CKF. PMID: 37316563; PMCID: PMC10495180.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansAnimalsCells
    3. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels. 2023 May 03; 9(5). Takematsu E, Murphy M, Hou S, Steininger H, Alam A, Ambrosi TH, Chan CKF. PMID: 37232969; PMCID: PMC10217467.
      View in: PubMed   Mentions:
    4. A Combination of Distinct Vascular Stem/Progenitor Cells for Neovascularization and Ischemic Rescue. Arterioscler Thromb Vasc Biol. 2023 07; 43(7):1262-1277. Zhao L, Lee AS, Sasagawa K, Sokol J, Wang Y, Ransom RC, Zhao X, Ma C, Steininger HM, Koepke LS, Borrelli MR, Brewer RE, Lee LLY, Huang X, Ambrosi TH, Sinha R, Hoover MY, Seita J, Weissman IL, Wu JC, Wan DC, Xiao J, Longaker MT, Nguyen PK, Chan CKF. PMID: 37051932; PMCID: PMC10281192.
      View in: PubMed   Mentions:    Fields:    Translation:HumansAnimalsCells
    5. A seed-and-soil theory for blood ageing. Nat Cell Biol. 2023 Jan; 25(1):9-11. Ambrosi TH, Chan CKF. PMID: 36650380; PMCID: PMC10611483.
      View in: PubMed   Mentions:    Fields:    
    6. Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration. Nat Commun. 2022 Oct 30; 13(1):6491. Andrew TW, Koepke LS, Wang Y, Lopez M, Steininger H, Struck D, Boyko T, Ambrosi TH, Tong X, Sun Y, Gulati GS, Murphy MP, Marecic O, Telvin R, Schallmoser K, Strunk D, Seita J, Goodman SB, Yang F, Longaker MT, Yang GP, Chan CKF. PMID: 36310174; PMCID: PMC9618571.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansAnimalsCells
    7. Cross-species comparisons reveal resistance of human skeletal stem cells to inhibition by non-steroidal anti-inflammatory drugs. Front Endocrinol (Lausanne). 2022; 13:924927. Goodnough LH, Ambrosi TH, Steininger HM, Butler MGK, Hoover MY, Choo H, Van Rysselberghe NL, Bellino MJ, Bishop JA, Gardner MJ, Chan CKF. PMID: 36093067; PMCID: PMC9454294.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansAnimalsCells
    8. Aging of Skeletal Stem Cells. Adv Geriatr Med Res. 2022; 4(2). Butler MGK, Ambrosi TH, Murphy MP, Chan CKF. PMID: 36037035; PMCID: PMC9409336.
      View in: PubMed   Mentions: 2  
    9. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021 09; 597(7875):256-262. Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. PMID: 34381212; PMCID: PMC8721524.
      View in: PubMed   Mentions: 80     Fields:    Translation:AnimalsCells
    10. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife. 2021 07 19; 10. Ambrosi TH, Sinha R, Steininger HM, Hoover MY, Murphy MP, Koepke LS, Wang Y, Lu WJ, Morri M, Neff NF, Weissman IL, Longaker MT, Chan CK. PMID: 34280086; PMCID: PMC8289409.
      View in: PubMed   Mentions: 22     Fields:    Translation:AnimalsCells
    11. Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Curr Top Microbiol Immunol. 2021; 434:1-31. Ambrosi TH, Chan CKF. PMID: 34850280; PMCID: PMC8864730.
      View in: PubMed   Mentions: 2     Fields:    Translation:Cells
    12. Human skeletal stem cell aging. Aging (Albany NY). 2020 Sep 14; 12(17):16669-16671. Ambrosi TH, Goodnough LH, Chan CKF. PMID: 32929053; PMCID: PMC7521487.
      View in: PubMed   Mentions: 4     Fields:    
    13. Delayed Union of a Diaphyseal Forearm Fracture Associated With Impaired Osteogenic Differentiation of Prospectively Isolated Human Skeletal Stem Cells. JBMR Plus. 2020 Oct; 4(10):e10398. Goodnough LH, Ambrosi TH, Steininger H, DeBaun MR, Abrams GD, McAdams TR, Gardner MJ, Chan CK, Bishop JA. PMID: 33103027; PMCID: PMC7574703.
      View in: PubMed   Mentions: 3  
    14. Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 2020 10; 26(10):1583-1592. Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY, Steininger H, Zhao L, Walkiewicz MP, Quarto N, Levi B, Wan DC, Weissman IL, Goodman SB, Yang F, Longaker MT, Chan CKF. PMID: 32807933; PMCID: PMC7704061.
      View in: PubMed   Mentions: 105     Fields:    Translation:HumansAnimalsCells
    15. Geriatric fragility fractures are associated with a human skeletal stem cell defect. Aging Cell. 2020 07; 19(7):e13164. Ambrosi TH, Goodnough LH, Steininger HM, Hoover MY, Kim E, Koepke LS, Marecic O, Zhao L, Seita J, Bishop JA, Gardner MJ, Chan CKF. PMID: 32537886; PMCID: PMC7370785.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansCells
    16. FGF21, not GCN2, influences bone morphology due to dietary protein restrictions. Bone Rep. 2020 Jun; 12:100241. McNulty MA, Goupil BA, Albarado DC, Castaño-Martinez T, Ambrosi TH, Puh S, Schulz TJ, Schürmann A, Morrison CD, Laeger T. PMID: 31921941; PMCID: PMC6950640.
      View in: PubMed   Mentions:
    17. A Revised Perspective of Skeletal Stem Cell Biology. Front Cell Dev Biol. 2019; 7:189. Ambrosi TH, Longaker MT, Chan CKF. PMID: 31572721; PMCID: PMC6753172.
      View in: PubMed   Mentions: 86  
    18. Identification of the Human Skeletal Stem Cell. Cell. 2018 09 20; 175(1):43-56.e21. Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, Brewer RE, Koepke LS, Marecic O, Manjunath A, Seo EY, Leavitt T, Lu WJ, Nguyen A, Conley SD, Salhotra A, Ambrosi TH, Borrelli MR, Siebel T, Chan K, Schallmoser K, Seita J, Sahoo D, Goodnough H, Bishop J, Gardner M, Majeti R, Wan DC, Goodman S, Weissman IL, Chang HY, Longaker MT. PMID: 30241615; PMCID: PMC6400492.
      View in: PubMed   Mentions: 243     Fields:    Translation:HumansAnimalsCells
    19. Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism. Aging Cell. 2018 Oct; 17(5):e12810. Graja A, Garcia-Carrizo F, Jank AM, Gohlke S, Ambrosi TH, Jonas W, Ussar S, Kern M, Schürmann A, Aleksandrova K, Blüher M, Schulz TJ. PMID: 30088333; PMCID: PMC6156450.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansAnimalsCells
    20. Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone. Mol Cell Biol. 2018 06 15; 38(12). Tolkachov A, Fischer C, Ambrosi TH, Bothe M, Han CT, Muenzner M, Mathia S, Salminen M, Seifert G, Thiele M, Duda GN, Meijsing SH, Sauer S, Schulz TJ, Schupp M. PMID: 29581184; PMCID: PMC5974429.
      View in: PubMed   Mentions: 10     Fields:    Translation:AnimalsCells
    21. The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl). 2017 Dec; 95(12):1291-1301. Ambrosi TH, Schulz TJ. PMID: 29101431.
      View in: PubMed   Mentions: 15     Fields:    Translation:HumansAnimals
    22. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell. 2017 06 01; 20(6):771-784.e6. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schürmann A, Saraiva LR, Schulz TJ. PMID: 28330582; PMCID: PMC5459794.
      View in: PubMed   Mentions: 342     Fields:    Translation:AnimalsCells
    23. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab. 2016 Feb; 5(2):79-90. Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S, van der Stelt I, Ringel S, Graja A, Ambrosi T, Kipp AP, Jastroch M, Schulz TJ, Keijer J, Klaus S. PMID: 26909316; PMCID: PMC4735627.
      View in: PubMed   Mentions: 38     Fields:    
    24. A Focused Low-Intensity Pulsed Ultrasound (FLIPUS) System for Cell Stimulation: Physical and Biological Proof of Principle. IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan; 63(1):91-100. Puts R, Ruschke K, Ambrosi TH, Kadow-Romacker A, Knaus P, Jenderka KV, Raum K. PMID: 26552085.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    Thomas's Networks
    Concepts (108)
    Derived automatically from this person's publications.
    Co-Authors (5)
    People in Profiles who have published with this person.
    Similar People (60)
    People who share similar concepts with this person.
    Same Department
    Search Department